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Abstract: In big data analysis, conventional clustering algorithms have limitations to deal with
nonlinear spatial datasets, e.g., low accuracy and high computation cost. Aiming at these problems,
this paper proposed a new DBSCAN extension algorithm for online clustering, which consists of three
layers, considering DBSCAN, granular computing (GrC), and fuzzy rule-based modeling. Firstly,
making use of DBSCAN algorithms’ advantages at extracting structural information, spatial data
are clustered via DBSCAN into structural clusters, which are subsequently described by structural
information granules (IG) via GrC. Secondly, based on the structural IGs, a series of granular models
are constructed in the medium space, and utilized to form fuzzy rules to guide clustering on spatial
data. Finally, with the help of structural IGs and granular rules, a rule-based modeling method is
constructed in the output space for online clustering. Experiments on a synthetic toy dataset and a
typical spatial dataset are implemented in this paper. Numerical results validate the feasibility to the
proposed method in online spatial data clustering. Moreover, comparative studies with conventional
methods and existing DBSCAN variants demonstrate the superiorities of the proposed method, as
well as accuracy improvement and computation overhead reduction.

Keywords: online clustering; DBSCAN extension; granular computing; three-layer model

1. Introduction

In today’s information age, the most important task is to process huge information and
data. Data mining is the basic tool in data analysis, which extracts interesting hidden pat-
terns or features from data sources, and uses them in decision-making or future studies [1,2].
Among quantities of computational intelligence activities, clustering plays a fundamental
and essential role in extensive applications, since the overwhelming majority of data are
unlabeled nowadays. Clustering algorithms’ major purpose is to group analogous objects
into clusters by some intrinsic properties between data points [3], e.g., structural, statistical,
distance-based, and density-based similarity, and so on. The resulted clusters are required
to have maximum-similarity intra clusters, and a minimum of one inter cluster [4]. Due to
these specialties, clustering results are usually utilized as the preprocessed step in further
data mining studies, such as classification, prediction, anomaly detection, correlation analy-
sis, etc. [5]. Therefore, to extract effective information in datasets efficiently, it is necessary
and important to find a suitable clustering algorithm in data mining analysis.

Clustering algorithms have been studied and developed for the last several decades,
as well as applied in real engineering applications, e.g., pattern recognition, scientific and
social research, economic analysis, industrial engineering, biomedical data analysis, and
so on [6,7]. According to the application preference, available data types, and particular
purposes or requirements, clustering algorithms are mainly divided into five categories [8]:
hierarchical, partition-based, model-based, grid-based, and density-based models. The
hierarchical models try to build tree structures, and to generate a hierarchy of groups
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according to the criterions of distance, including agglomerative and divisive ways. The
well-known hierarchical models are CURE and CHEMELEON [9]. The partition-based
models tend to find meaningful partitions in the dataset, and then complete clustering
according to specific partitions, e.g., PAM and CLARA [10,11]. The model-based algorithms
usually train a model first, based on special mathematical functions on the training dataset,
and then complete the clustering, e.g., self-organizing-map (SOM) algorithm [12]. The
grid-based models mesh feature space into a finite number of cells, and then cluster data
by aggregating similar sub-grids, e.g., CLIQUE [13]. Density-based models group data
points according to data’s density distribution, and can determine clusters with arbitrary
shapes, e.g., typical DBSCAN and OPTICS [14,15]. However, none of these algorithms
can be ranked as the most effective one, since all these models have advantages at specific
applications. However, orienting to nonlinearly-inseparable data, e.g., clustering spatial
data, most of these algorithms have limitations. To address this problem, an enhanced
clustering algorithm is generally required.

On the other hand, the computation cost is also a critical issue in clustering, especially
in big data analysis. As we know, one disadvantage of traditional clustering algorithms is
the high computational complexity [16], which makes them limited in dealing with datasets
with a very large size. However, real-world data sources not only have large quantities,
but also generate new data continuously as a system operation. Due to the unsupervised
character of clustering, some clustering models have to run the whole process once again to
determine new data’s belonging. In actual engineering applications, it is not practical due
to the limitations on RAM and time consumption [17]. An available way is the usage of
the model-based methods which can apply the trained model on testing data. In this way,
the model-based algorithms can be feasible in online clustering, e.g., utilizing the trained
mathematical models to realize new data clustering online [18]. However, to improve the
efficiency of clustering, large data are still a problem, e.g., how to accelerate the online
clustering process, and how to reduce the total computing overhead.

To address the issues mentioned above in online spatial data clustering, this paper
proposes an advanced approach. This method is an extension of the DBSCAN algorithm
combined with granular models. Referring to the idea of model-based methods, the pro-
posed method consists of three layers. First, data are clustered by the DBSCAN algorithm
in the original data space. Then, each DBSCAN cluster is described by information granules
(IG) via granular computing (GrC) [19]. These granules have the structure information
from DBSCAN, and are used as structural descriptors. Second, these structural granules are
mapped into a hidden layer, which forms rules for determining the data’s cluster belonging.
In this medium space, the reconstruction metric and justifiable granulating are applied
in the fuzzy rule formation. Finally, a rule-based model combining structural granules in
input space and rules in medium space is constructed in the output space, and is used to
guide the final online clustering. The major contributions of this proposed method are
presented as the following three points:

(1) The superiority of using DBSAN algorithms on the nonlinearly-inseparable data:
DBSCAN is one of the typical density-based algorithms which group data points of
dense regions, and separate regions of low density [14]. It has advantages at solving
nonlinear inseparable issues by discovering clusters with arbitrary shapes, namely
applicable on spatial data clustering. The second advantage of DBSCAN compared to
other methods is the ignorance of expert knowledge on parameter setting, which is
helpful to reduce human interference.

(2) The usage of granular models in data description and rule-based modeling: according
to human beings’ knowledge, GrC divides an object into information granules, and
builds granular models for description [20]. By making use of granular models, the
shaped clusters in DBSCAN could be broken up into granules which slip the shape’s
influence. Moreover, granules could reconstruct a cluster with arbitrary shapes. With
the information carried in each granule, it is easy to satisfy the expression of new data
and complete their online clustering.
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(3) The proposed method has an advantage in reducing the computation cost in on-
line clustering. Compared with other clustering algorithms, DBSCAN has a rela-
tively acceptable computation complexity, and even has good efficiency on large data
sets [21,22]. Additionally, by using a limited number of granules and rules to guide
the online clustering, the time of new data clustering can be significantly reduced.

The rest of the paper is structured as follows. In Section 2, some related works
on DBSCAN variants are reviewed. Section 3 describes the framework of the proposed
method. Moreover, necessary data preprocessing and an introduction on DBSCAN are
also presented. Section 4 describes the methodology of the proposed method, involving
granule construction in the input space, granular rule formation in the medium space, the
mapping and rule-based modeling process in the output space, and the online clustering
process. Section 5 presents the experiment studies on both synthetic data and a typical
spatial dataset. Finally, Section 6 concludes all of the studies in this paper.

2. Related Work on DBSCAN Variants

In this research, the proposed method is actually an extension of the DBSCAN al-
gorithm in online clustering. Therefore, some related work about the development of
DBSCAN algorithms are reviewed here, mainly on the modification, improvement, and
extension of DBSCAN algorithms.

2.1. Basic DBSCAN Algorithm

DBSCAN was first proposed in 1996 [14], and is a density-based clustering algorithm.
It generates clusters by the connectivity analysis based on density, namely clustering via the
distinction between high-density regions and low-density regions. The main idea is based
on the neighborhood of a point, which belongs to a cluster, and contains at least a minimum
number of data samples. Therefore, it is easy to determine any arbitrary clusters through
this idea. Due to these properties, DBSCAN algorithms are usually applied in clustering
data with arbitrary shapes, e.g., in fields involving spatial analysis, such as civil engineering,
meteorological engineering, spectroscopy engineering, and diagnostics on medical images.
In [23], DBSCAN was applied to study the issue of drinking water distribution pipe
breakage in American infrastructure systems. In [24], the DBSCAN algorithm was applied
to group stationary GPS trace data into driving destination clusters. In meteorological
engineering, DBSCAN was utilized in the application of weather conditions [25,26]. In a
spectroscopy application, DBSCAN was used for clustering single particle mass spectra
at New York City [27]. Moreover, DBSCAN was proved to be practical in many medical
applications, e.g., identification of skin lesion(s), clustering in the diabetes mellitus type
II data, and the detection of brain diseases by MRI images [28–30]. Moreover, DBSCAN
could be utilized in clustering some non-spatial high-dimension databases. For instance,
DBSCAN was used in remote sensing to cluster three-dimensional images in [31]. In [32],
DBSCAN was used to monitor anomaly states in high-dimension wind turbine data.

2.2. Extensions of DBSCAN Algorithms

However, in some real applications, the original DBSCAN algorithm has some draw-
backs, e.g., the poor robustness, and the limitations on clustering data with different
densities. Therefore, modifications of the DBSCAN algorithm were proposed in the litera-
ture, e.g., VDBSCAN, FDBSCAN, Fast DBSCAN, Grid-DBSCAN, and so on [33,34]. Here,
two commonly used variants (Fuzzy-DBSCAN and Grid-DBSCAN) are reviewed.

Fuzzy DBSCAN algorithms were proposed to improve the robustness. In original
DBSCAN algorithms, a data point is determined to belong or not belong to a cluster.
However, in some special cases where a cluster is adjacent to other clusters, it means that
the border points of two clusters are close, or that a border point belongs to several different
clusters at the same time. Therefore, the membership of fuzzy theory is usually introduced
to deal with this kind of fuzzy concept. The fuzzy DBSCAN algorithms were simply called
FN-DBSCAN [35], and they were commonly developed into three types: fuzzy core, fuzzy
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boundaries, and a combination of the previous two. The first type of extension model was
based on fuzzy core, and it actually utilized fuzzy membership functions to define the
density function and redefined core points [36]. It proposed a soft constraint which specified
the approximative number of points in the neighborhood of core points. Then, these core
points were grouped to fuzzy clusters. Contrary to standard DBSCAN algorithms, which
are sensitive to the number of neighbor data points, FN-DBSCAN algorithms are sensitive
to the density of neighbor data points. The second type of extension models applied the
fuzzy theory to generate the fuzzy boundary [35]. These algorithms defined a membership
function on the distance as a soft constraint. This definition made it possible to generate
fuzzy clusters with approximate reachability properties and overlapping boundaries. The
third type of models combine the previous two fuzziness, namely approximately dense
fuzzy cores and reachable fuzzy boundaries [37]. All of these models allow to obtain a
much more flexible extension of the DBSCAN algorithm, and to improve the scalability of
clustering data points. However, FN-DBSCAN models cost more computation time than
standard DBSCAN algorithms due to the fuzzification process. Their results, the same as
DBSCAN algorithms, are also not numerical, limiting the extension on online testing for
new data points.

Grid-DBSCAN was proposed to deal with the issue that the original DBSCAN al-
gorithms are not effective on grouping clusters with different densities. Its main idea is
combining the idea of density-based and grid-based clustering algorithms. Therefore, it
was also regarded as a representative hybrid algorithm [38]. It contains two stages to
realize clustering of different density groups. At the first stage, it utilizes the grid-based
idea to divide feature space into appropriate grids, and the density is similar in each grid.
In this way, it forms a multiresolution grid data structure. Then, at the second stage, it
aggregates grids with the same densities into groups, and those groups with appropriate
density parameters are identified as the final clusters. This is actually implemented by the
idea of DBSCAN algorithms. Since the computation time of Grid-DBSCAN relies on the
amount of grid cells instead of that of data points, it not only has the ability of clustering
different density issues, but also a better computational complexity.

2.3. Incremental DBSCAN Variants

Another problem in traditional DBSCAN clustering is the expansibility in online
clustering. In today’s big data era, the size of the historical dataset is large, so clustering on
the whole dataset is a hard task. When new data are generated and added into the studied
dataset continually, it is impossible to collect all data points before clustering. For this issue,
a good solution is to divide the clustering process into a training part and testing part which
aims at clustering new data online. However, since the results of most DBSCAN algorithms
are non-parametric, DBSCAN is not applicable in the modeling process. For example, when
new data comes, traditional DBSCAN algorithms have to re-cluster the whole dataset again,
which certainly decreases its efficiency and wastes a large amount of computation time.
Therefore, some extensions of DBSCAN algorithms based on incremental clustering were
proposed in the literature, e.g., the incremental DBSCAN algorithm and the incremental G-
DBSCAN algorithm [39,40]. These algorithms utilized core points to direct the clustering of
new data, and are widely applied to dynamic databases which are updated frequently, e.g.,
Data Warehouse, anomaly program behaviors detection [41,42]. Compared to a traditional
re-clustering approach, the incremental algorithm is verified to be more efficient, since it just
needs to cluster new data. The other example was the incremental G-DBSCAN algorithm,
which made use of the advantages of the G-DBSCAN model, and realized the clustering of
updated data in [40]. Furthermore, considering that most incremental DBSCAN algorithms
utilize core points in online clustering, an improved incremental DBSCAN algorithm was
proposed based on partition methods in [43], which limit the search space to partitions for
obtaining good efficiency.
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3. Framework and Necessary Preparation

According to the literature review on issues of DBSCAN algorithm variants, an ex-
tension algorithm combining DBSCAN with model-based idea is proposed for online
clustering in this study, which is implemented with three layers of granule models. The
framework of the proposed method is shown in Figure 1.
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It is seen from Figure 1 that the proposed method is mainly implemented in three
spaces: input space, medium space, and output space. First, data are divided into clusters
by the traditional DBSCAN clustering algorithm. Labels of these clusters will be regarded
to granulate the output space of clustering. Then, the input space is constructed by gran-
ule models. Based on the DBSCAN clustering results, the data in the input space are
distinguished by arbitrary shapes. Considering that input’s dimension is always high,
high-dimensional granule models are constructed to describe these structural clusters.
Second, a medium space to connect input and output space is established. The medium
space could be established by the value domain of an indicator or a function. Since the
established medium space is usually one dimension, it is divided into granules expressed
by intervals. Each granule in medium space forms rules of determining the mapping from
input to output. Finally, according to the model-based idea, cluster labels of new data in
testing or online clustering are determined via rule-based modeling in three-layer granule
models, including identifying granules in input space, which corresponds to intervals in
medium space, and determining cluster labels based on rules in output space.

3.1. Data Preprocessing

Before the modeling process, some issues are required to be stated in advance, e.g.,
data preprocessing, which is a must in data mining and data analysis. There are several
necessary data preprocesses, e.g., complement of missing data, correction of abnormal data,
de-noising, and normalization. Considering that the raw data in the real world often has
different units and magnitudes in clustering, normalization processing is emphasized here.
Many normalization methods were proposed in the literature [44], e.g., linear function
transformation, logarithmic function transformation, cotangent function transformation,
and so on. The max–min function transformation is used the most, and is good at limiting
the inputs into a space of [0,1]n. Therefore, it is applied for clustering in this paper, and its
formula is defined in (1):

y =
x− xmin

xmax − xmin
(1)
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where x is the original data, and y is the value after normalization; xmax and xmin are the
maximum and minimum values. Through Equation (1), the dataset {y} will be friendlier
in clustering.

3.2. Implementation of DBSCAN Algorithm

Based on description of the basic DBSCAN algorithm, a density function is required
to realize DBSCAN quantification, which can be denoted as the number of points within a
given neighborhood. According to this idea, three types of points via this density function
can be denoted, and are shown in Figure 2, namely core points (A), boarder points (B and
C), and noise points (N). Assuming a threshold, thr, if the density value is larger than thr,
the point is a core point. On the contrary, the point is a boarder point when it is in a core
point’s neighborhood, otherwise it is a noise point. Generally, both the core points and
their neighbor boarder points are clustered into a cluster, but noise points are not.
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In [14], two parameters related to DBSCAN clustering were defined, the neighborhood
size (s) and the density threshold (thr). Then, given a test point, p, its density function can
be expressed as Ns(p) in (2):

Ns(p) = Num({q∈T | dis(p,q) ≤ s}) (2)

where q is another arbitrary point in T; dis(p,q) is the distance between these two points
(p and q); and Num(*) is denoted as the function to count the number of points. Then, all
points can be categorized and grouped to clusters.

4. Methodology of the Proposed Three-Layer Granule Models

Based on the above description, the DBSCAN algorithm is utilized to cluster training
data firstly, and its results determine how data aggregates into clusters in the input space,
and how many clusters will be in the output space. Then, the main task in modeling is to
construct information granules in the input and medium spaces.

4.1. Granulating in the Input Space

DBSCAN can generate clusters that have arbitrary shapes, and its output is non-
parametric. This causes difficulty on its extension for online clustering, unlike k-means or
fuzzy c-means (FCM) [45], which can utilize cluster centers for online clustering directly.
In the literature, several incremental DBSCAN algorithms were proposed to utilize core
points for clustering updated data. However, the number of core points in big data is still
huge. Therefore, this paper proposed to granulate core points, and to use prototypes of
granules to direct online clustering. Contrary to incremental DBSCAN algorithms based
on grids and partitions, granules in this study have noting to do with shapes of original
clusters, but they could be used to reconstruct the shaped clusters. On the other hand, since
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an information granule is a set of similar points, the computation cost will be reduced by
only considering the prototypes of granules in GrC.

4.1.1. Construction of Information Granules (IGs)

The process of granulating is described as follows. Assuming a cluster resulting from
DBSCAN, several data points are selected from the cluster as its descriptors firstly. If the
cluster has N data points, the selected data points are formed as a set of prototypes, Z,
expressed in (3):

Z = {z1, z2, · · · , zc} (3)

where zi represents the prototype of the ith cluster; c is the number of selected data points,
and usually set as a relatively small value for the consideration of efficiency.

Then, based on the selected prototypes, data points can be grouped into different
IGs, which are constructed centering on those prototypes. To realize IG construction, the
membership of data is a useful tool for expressing data’s belonging to IGs, e.g., the fuzzy
membership definition in (4). Assuming a data point, xk ∈ Xh, where Xh is the hth cluster
in DBSCAN clustering results, its membership function to IGi is defined as (4):

ui(k) =
1

c
∑

j=1

(
‖xk−zi‖
‖xk−zj‖

) 2
m−1

(4)

where ui(k) is the value of membership expressing how close xk is to the ith granule; m is the
fuzzification parameter, which is required to be larger than 1. Considering the prototypes
are directly regarded as cores of granules, m = 2 is generally determined [20].

Considering that there exists a case that a point is equal to the prototype, namely
xk = zr, where zr is a prototype, the function in (4) will not be able to compute because of
||xk − zr|| = 0. To address this problem, a modification on (4) is defined as below:

ui(k) =


0, xk = zr, zr = zi

1/
c
∑

j=1

(
‖xk−zi‖
‖xk−zj‖

)2/(m−1)
, xk 6= zr

1, xk = zr, zr 6= zi

(5)

The new function degenerates to distinct membership as xk = zr. When zr = zi, the
membership, ui(k), can be directly set as 1. When zr 6= zi, implying this point overlaps
other prototype points, the membership can be set as ui(k) = 0 and ur(k) = 1. Then, after
the re-calculation on the membership, data points can be partitioned into different groups
centering on prototypes, and each group is regarded as a fuzzy granule.

4.1.2. Determination of the Granule Size

Generally, IGs are designed as hyperrectangles in the high-dimensional input space [16].
Expanding around a selected prototype, zi, the corresponding granule in the input space
could be built as a hyperrectangle, Bhi = [lhi, uhi]. Considering that all data are normalized,
the constraint of boundary is also satisfied, namely l, u∈ [0,1]n.

Data points are partitioned into different granules by membership matrix, but the
obtained information granules are fuzzy. Therefore, the performance of granule construc-
tion will be directly affected by the size of the granules. In general, two indicators can be
proposed to construct and evaluate IG’s performance: coverage and specificity [22].

Coverage is an indicator representing the amount of data points covered in an IG, so it
can be simply defined as below:

Cov =
1
N

N

∑
k=1

incl(tk ∈ Yk) (6)
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where Yk represents the cluster; tk is the output; and incl(*) is a Boolean function. When
tk ∈ Yk, the value of incl(*) is 1.

Specificity is the other indicator. Generally, it requires a high value when the granule
size is small. Therefore, we can define a simple function as below:

Spe =
1
N

N

∑
k=1

exp(−α ∗ size(Yk)) (7)

where scale(Yk) is the IG size; exp(*) is a selected function expressing the negative correlation
between IG size and specificity, and α is a slope control factor. For example, information
granules are designed as hyperrectangles in this paper, and the selected points are proto-
types. Thus, the size of the information granules could be decided by a vector, S, as shown
in (8):

S = [ε+1 , ε−1 , ε+2 , ε−2 , · · · , ε+n , ε−n ] (8)

where ε+i and ε−i are the distances of z to the upper bounder, ui, and lower bounder,
li, respectively.

For example, a two-dimensional granule is shown in Figure 3a. A good information
granule usually requires high coverage and high specificity. However, there exists a conflict
to reach the highest values of both the indicators, as shown in Figure 3b.
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In order to address this multi-objective problem, an alternative design is to consider a
product of these two indicators, defined in (9):

V(S) = Cov ∗ Spe (9)

where V(S) is defined as a new indicator determining the granule size, S.

4.2. Granulating in the Medium Space
4.2.1. Construction of the Medium Space

As seen in the description in Figure 1, the medium space is a hidden layer which
has no clear definition. Its purpose is to build the connection between input space and
output space, and to realize the model-based clustering. Therefore, we could choose some
mathematical functions or performance indicators to construct the medium space. The
granules of input space not only wipe out the shape influence by dividing original clusters,
but can also be used to reconstruct the original clusters with arbitrary shapes. It is seen that
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reconstruction is a perfect bridge connecting the two spaces. Therefore, a reconstruction
indicator is proposed for evaluating the performance quantitatively here, as defined in (10):

Rec =
1

card(X) ∑
x∈X
‖x− x̂‖2 (10)

where Rec is the reconstruction error; card(X) is the function counting data amount in the
dataset, X. This indicator requires that a good reconstruction should have a small Rec value.

It is seen from (10) that, if the membership matrix and prototypes are given, the
reconstructed data point is expressed in (11):

x̂k =

(
c

∑
i=1

um
i (xk) · zi

)
/

(
c

∑
i=1

um
i (xk)

)
(11)

where x̂k is the reconstructed data of the original data, xk. Equation (11) is to reconstruct
a data point by the weighted average of the prototypes, and the weights are calculated

as um
i (xk)/

c
∑

i=1
um

i (xk) . According to this concept, the reconstructed data will be different

when using descriptors of different clusters. If the original data belong to a cluster, the
reconstruction error calculated by granules of the corresponding cluster would be small.
Therefore, the medium space is constructed by the reconstruction error of all output clusters
in this paper.

4.2.2. Justifiable Granulating

Since the medium space constructed by reconstruction error is one dimension, the
granules in this hidden layer are intervals. To construct suitable granule models, the size
of interval granules is required to be optimal, which is actually decided by the bound of
intervals according to (8). In [46], a method of constructing interval information granules
was proposed, called justifiable granulating. It also utilized Equations (6), (7), and (9) to find
the optimal granule size. Contrary to high-dimensional granules, no prototypes are chosen
in interval granules. Therefore, the median of data is chosen as the numerical representation
in [46], and regarded as prototypes of interval granules. Then, the size vectors, S = [ε+, ε−]
(lower and upper bound, respectively), are calculated by Equations (6), (7), and (9). Since
two parameters, ε+, ε−, need to be decided in S, two objective functions are given out in
Equations (12) and (13):

V(ε+) = f1(card
{

xk ∈ [ym, ym + ε+]
}
) ∗ f2(

∣∣ε+∣∣) (12)

V(ε−) = f1(card
{

xk ∈ [ym − ε−, ym]
}
) ∗ f2(

∣∣ε−∣∣) (13)

where ym is the median value; f 1 and f 2 represent the coverage function (6) and specificity
function (7), respectively. In interval granules, the function, incl(*), is expressed as the
card{Yk}, and the function size(Yk) is expressed as the length of Yk, as size(Yk) =

∣∣y+k − y−k
∣∣.

The optimal lower and upper bound are obtained by maximizing (12) and (13), respectively.

4.3. Online Clustering via Rule-Based Models

Based on the description in Sections 4.1 and 4.2 the connection between the input
and medium spaces is established by their information granules. On the other hand,
the step of testing or online clustering is to determine the cluster labels according to the
reconstruction errors, and it could be regarded as a rule-based process from the medium
space to the output space. Generally, a fuzzy rule-based system is constructed by linguistic
rules described in (14):

IF premise (antecedent) THEN conclusion (consequent) (14)
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where the inference is described as: if the fact (premise) is given out, then the conclusion can
be determined. Therefore, Equation (14) is also called as IF-THEN rule-based form.

According to the above concept, rules could be established connecting the medium
space and the output space. The conclusion is certainly the cluster label in the clustering
problem. The premise in this paper is decided in the medium space. Taking each data
point as the study object independently, it is determined to belong to a cluster in the output
space or not. Therefore, for a given cluster, any data point is distinguished into belonging
and not-belonging, and these naturally correspond to two rules. To express these rules
concretely, interval granules constructed by reconstruction errors in the medium space are
considered. The final rules of a rule-based model for clustering are formed as below:

Ri : IF Rec(xk) is in IGi,1, THEN xkis in Ci;
IF Rec(xk) is in IGi,0, THEN xkis not in Ci;

(15)

where Ci represents the ith cluster; Ri represents the rule library of cluster Ci; Rec(xk) is the
reconstruction error of xk based on IGs in cluster Ci; IGi,1 is the interval granule consisting
of all points in cluster Ci; and IGi,0 is the interval granule involving all points outside of
cluster Ci. If the reconstruction error locates in the interval granule of belonging to a cluster,
then the final cluster label is determined. The flow sketch of online clustering is shown
in Figure 4.
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According to Figure 4, the process of online clustering is described. First, for new
testing data, its memberships to granules in the input space are calculated. Then, its
reconstruction error based on different clusters is calculated in the medium layer. Finally,
according to the established rules library in (15), the data point is determined to the
corresponding cluster, and its cluster label is the output. Since the whole process is based
on memberships and fuzzy rules, the online clustering approach is also called the fuzzy
rule-based model.

5. Experiment and Discussion
5.1. Synthetic Data

To study the performance of the proposed method, a synthetic dataset could be given
for the primary experiments. For example, a dataset having two two-dimensional clusters
is defined in (16):
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Cluster1 :
{

x1 = cos(θ) + ε;
x2 = sin(θ) + ε;

Cluster2 :
{

x1 = 1− cos(θ) + ε;
x2 = 0.5− sin(θ) + ε;

(16)

where x1 and x2 are two dimensions; ε is the Gaussian noise; θ is an angle variable. One
cluster is the rotation and translation of the other cluster. Here, 2000 training data points are
generated by (16), 1000 for Cluster 1 and 1000 for Cluster 2. Then, the dataset is normalized
by (1), and is plotted in Figure 5.
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clustering results (two clusters in red and green points, noise in blue points).

In Figure 5, the distribution of data points is shown: Figure 5a shows the original
data and Figure 5b shows the results via DBSCAN clustering. It is seen that there are
obviously two clusters which are not linearly separable. Traditional clustering algorithms
(e.g., k-means, FCM) are not applicable in this case, related to the clustering issue on spatial
datasets, but DBSCAN algorithm has superiority. To obtain the optimal parameters in
DBSCAN clustering, the k-dist graph method [47] is generally used, e.g., parameters (k = 5,
s = 0.0273) are applied for DBSCAN clustering in Figure 5b.

5.1.1. Optimal Prototypes and Granules Construction of Input Space

After DBSCAN clustering, clusters with arbitrary shapes are obtained. In order to
make use of these cluster information in online clustering, some representative points are
selected to describe these clusters, called prototypes in the above context. At the beginning,
we could choose these prototypes randomly, and express them as (3). Then, these prototypes
are adjusted to obtain the strongest representativeness. Finally, an information granule
centering on this prototype is constructed. The concrete algorithms are described as follows.

Step 1: initiating prototypes and IGs. c prototypes in each cluster are chosen randomly,
denoted as {zi| I = 1, 2,· · · , c}. Then, IGs are constructed according to the description in
Section 4.1. To initialize the IGs’ size, the upper and lower bounds are calculated in a
dimension-by-dimension way, seeing the granule construction in two-dimensional space,
as seen in Figure 6. Firstly, the initialized prototypes and whole data points are projected at
each one-dimension axis, and sorted in ascending order, e.g., {min(X1), z1,1, z2,1, z3,1, z4,1,
max(X1)} at axis X1. Then, the two closet prototypes are selected to compute their upper
(or lower) bound through (17):

ui,k = li+1,k =
zi,k + zi+1,k

2
(17)
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where zi,k and zj,k are the values of two prototypes (zi and zi+1) at axis Xk. This process
is repeated to determine the bounds of all IGs. When the prototype, zi, is closet to 0/1,
its bounds can be determined directly as li,k = min(Xk) or ui,k = max(Xk), e.g., l1,1 and u4,1
in Figure 6.
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Step 2: updating prototypes. In Figure 6, it is seen that the initialized prototypes
(red points) are not always the centroids of IGs. In order to improve the prototypes’
representativeness, original prototypes can be updated after granule construction, as below:

z′i =
[

ui,1+li,1
2 , ui,2+li,2

2 , · · · , ui,n+li,n
2

]
(18)

where z′i is the new prototype which is the centroid of the corresponding granule. Moreover,
considering the randomness in the initial selection, the prototypes are not distributed
uniformly, so the coverage and specificity performance may be affected. For example, when
two prototypes close to each other, their granules are easily overlapped. Taking these issues
into account, prototypes need to be updated further. Here, to evaluate the suitability of
the updated prototypes, a metric is defined in (19) which requires the distance of all data
points to their belonging prototypes as the minimum:

minQ =
c

∑
i=1

∑
x∈Gi

‖x− zi‖2 (19)

where Q is the objective function for updating prototypes; Gi is the ith information granule
based on prototype zi; c is the number of granules; ‖x− zi‖2 is the Euclidean distance of
point x to its corresponding prototype. When this objective function converges to a given
threshold, the updated prototypes are regarded as optimal.

Step 3: adjusting the size of IGs. By repeating Step 1 and Step 2, the optimal prototypes
are determined, and IGs can be constructed. However, it is seen from Figure 6 that these
primary granules can not achieve a good coverage, so it is necessary to adjust the size of
granules based on Equations (6)–(8). Though there are 2 × n parameters in (8), it will cost a
lot of computation overhead in the adjustment process. Considering the prototypes are
updated as the centroids of granules in Step 2, we could consider only one parameter here
to adjust the granule size, namely the increment parameter (ε) to the boundary. Then, the
optimal granule sizes are updated based on (9).

Figure 7 shows the results of granule computing on the toy data; the IG construction
results and the initial and optimal IGs are plotted in Figure 7a,b, respectively. Quantitatively,
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Table 1 presents the numerical results of the optimal prototypes and the size of the IGs finally.
From these results, some conclusions can be obtained. First, the selected prototypes can well
reflect the distribution of data, and the corresponding IGs can well describe data structures.
This verifies the feasibility of using GrC in spatial data mining. Second, comparing IGs
in Figure 7a,b, it is seen that IGs after optimization can have higher specificity, and data
coverage is also guaranteed, which implies the proposed GrC steps and optimization
methods are effective.
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Table 1. Prototypes and information granules of two clusters (c = 5).

z1 z2 z3

Cluster1 (0.5507, 0.8299) (0.1020, 0.4865) (0.6361, 0.5103)

Cluster2 (0.4456, 0.2005) (0.8895, 0.5088) (0.8331, 0.1971)

G1 G2 G3

Cluster1 [0.4606, 0.6408] × [0.6993, 0.9605] [0.0160, 0.1881] × [0.3429, 0.6302] [0.5487, 0.7236] × [0.3354, 0.6852]

Cluster2 [0.3668, 0.5244] × [0.0557, 0.3452] [0.8040, 0.9750] × [0.3605, 0.6572] [0.7584, 0.9078] × [0.0471, 0.3471]

z4 z5

Cluster1 (0.3409, 0.9394) (0.1640, 0.7746)

Cluster2 (0.3778, 0.5040) (0.6467, 0.0618)

G4 G5

Cluster1 [0.1948, 0.4869] × [0.8788, 1.0000] [0.0861, 0.2420] × [0.6489, 0.9004]

Cluster2 [0.2959, 0.4598] × [0.3455, 0.6625] [0.4993, 0.7941] × [0, 0.1237]

5.1.2. Construction on Interval Granules in Medium Space

According to the description in Section 4.2, the medium space is constructed by
reconstruction errors. Therefore, the memberships of data points to all prototypes are
computed firstly. Considering the purpose of medium space is to construct fuzzy rules
for online clustering, the reconstruction error is calculated focusing on each cluster. For
example, assuming a data point, x, its membership matrix is calculated as U = {ui}. To
discuss its affiliation to the kth cluster, only the memberships relating to granules of Cluster
k are considered, as shown in (20):

uk = [u(k−1)∗c+1, u(k−1)∗c+2, · · · uk∗c]; (20)

where uk represents the membership matrix to granules belonging to Cluster k. Then,
reconstruction errors of the dataset based on uk are calculated according to Equations (10)
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and (11). Based on two moon clusters in the toy data, reconstruction errors of each cluster
are calculated independently, and are shown in Figures 8 and 9.
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In Figures 8 and 9, Error_is and Error_not represent the reconstruction errors of data
points belonging/not-belonging to a given cluster, respectively. Four sub-figures show
the statistics of reconstruction errors with different numbers of IGs (c = 5, 10, 15, 20),
respectively. It is seen that the distinguishability in the data description is enhanced when
the number of IGs increases, which also implies that it is feasible to make use of the
reconstruction errors (Error_is and Error_not) to form rules for clustering.
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First, according to the distribution of Error_is and Error_not, we could construct the
interval granules in the medium space as Section 4. It is seen from Figures 8 and 9 that
reconstruction errors of points within a cluster (Error_is) are mostly close to zero. Therefore,
the lower bound of the interval granule is set as 0, and the upper bound is calculated by
justifiable granulating methods as Equations (12) and (13). Conversely, it is also seen that
the reconstruction errors of data points outside a cluster (Error_not) distribute symmetrically.
Therefore, the lower bound and upper bound of interval granules can be set symmetrically
to the median value, ym. On the other hand, if the statistical distributions of Error_is and
Error_not in Figures 8 and 9 are assumed to fit some probability density functions (PDF),
then the objective functions in Equations (12) and (13) for calculating bounds are rewritten
by the following continuous forms:{

f1(ε) =
∫

x→ε

p(x)dx

f2(ε) = exp(−α · ε)
(21)

Based on Equations (12), (13), and (21), the bounds of interval granules (Error_is and
Error_not) are calculated. According to the above description, the interval granule (Error_is),
representing points within the ith cluster, is expressed as Bi1, and the interval granule
(Error_not) is defined as Bi0 on the contrary. Their bounds in the medium space can be
further expressed in detail, as (22):

Bi1 = [0, V(ε+1 )]; Bi0 = [V(ε−0 ), V(ε+0 )]; (22)

where V(ε+1 ),V(ε−0 ), V(ε+0 ) are the optimal bounds calculated via GrC. The final numerical
results are presented in Table 2, where IGy and IGn present the granular intervals of Error_is
and Error_not.

Table 2. Results of granular intervals in the medium space.

c = 5 c = 10

Cluster1 IGy: [0, 0.0260];
IGn: [0.0011, 0.2591];

IGy: [0, 0.0090];
IGn: [0.0034, 0.1914];

Cluster2 IGy: [0, 0.0270];
IGn: [0.0046, 0.2526];

IGy: [0, 0.0080];
IGn: [0.0055,0.1875];

c =15 c =20

Cluster1 IGy: [0, 0.0090];
IGn: [0.0044, 0.1804];

IGy: [0,0.0070];
IGn: [0.0036,0.1796];

Cluster2 IGy: [0, 0.0070];
IGn: [0.0047, 0.1887];

IGy: [0, 0.0070];
IGn: [0.0029, 0.1789];

Second, based on these constructed interval granules, we could build two fuzzy rules
for each cluster, e.g., one rule for determining a data point belonging to a cluster, and one
rule for not-belonging, as presented below:

Rules f or the ith cluster Ci :{
Ri : IF Rec(xk) is in Bi1, THEN xk belongs to Ci;
Ri : IF Rec(xk) is in Bi0, THEN xk doesn′t belong to Ci;

where Ri is a rule used to determine if xk belongs to cluster Ci; Ri is the contrary rule used to
determine that xk does not belong to cluster Ci. These two rules are both fuzzy rules. With
the help of these rules, when new data are obtained in online testing, clustering on these
data can be quickly completed with less cost. Moreover, due to the fuzzy characteristics, the
final decision can allow an extent of uncertainty when facing some confused data requiring
manual checking, instead of making a determined decision blindly.
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5.1.3. Online Testing and Evaluation

According to the description in Section 4.3, the online testing is actually a rule-based
clustering process. It is to determine the belonging clusters of testing data based on rules.
Since the proposed approach considers DBSCAN and GrC in rule formation, it of course
inherits the ability of density-based methods on distinguishing arbitrarily-shaped clusters.
However, the rule-based clustering is superior to density-based clustering on reducing
the cost of online clustering. For example, the crispy DBSCAN algorithm has to test all
core points when clustering new incremental data, but the proposed approach can make
decisions by just the constructed rules.

Based on Equation (16), 1000 new data points are generated as the testing dataset,
which contains 500 points in Cluster 1 and 500 points in Cluster 2, respectively. The concrete
online clustering of the proposed method is described in Figure 4. It is known that the final
result could be calculated by rules of both Ri and Ri, and it can be fuzzy or determined
according to the application requirement. In this paper, we just consider the rule, Ri, to
obtain a certain cluster label. To evaluate the performance of clustering the new incremental
dataset quantitatively, the accuracy metric can be given out in (23):

Acc =
1
N

nc

∑
i=1

TPi × 100% (23)

where Acc is the accuracy; nc is the amount of clusters; N is the total amount of samples for
testing; and TP represents true positive event via the confusion matrix [48], i.e., it calculates
the amount of correctly-clustered data points.

Table 3 shows the performance of the proposed approach in online clustering, includ-
ing the accuracy and computation time. Because different numbers of granules have dif-
ferent influences on the specificity of rules in medium space (as shown in Figures 8 and 9),
this subsequently affects the final online clustering performance. Therefore, four different
parameters are discussed here: c = 5, 10, 15, 20. From the above results, it is found that
as the number of granules increase, the accuracy of online clustering improves, but the
computation cost will also increase. Therefore, there should be a trade-off for the final
selection in practical applications.

Table 3. Performance of the proposed approach in online clustering.

c = 5 c = 10 c = 15 c = 20

Acc. 0.8920 0.9350 0.9400 0.9520

Time 0.0316 0.0438 0.0908 0.0927

To further compare the performance of the proposed approach with other DBSCAN
extensions on online clustering, as well as other well-known online clustering methods, four
methods are selected here, such as crispy incremental DBSCAN (C-DBSCAN), incremental
grid-DBSCAN algorithm (G-DBSCAN), online k-means, and online weighted k-means
(W-k-means) [49].

Table 4 shows the comparison results of different online clustering methods on the
given toy data. The proposed approach is set up with c = 20 for the sake of good perfor-
mance. By comparing with the other two DBSCAN extensions, which also have the same
number of cells for online clustering, it is found that the major superiority of the proposed
approach is less time consuming, even though it also has a slightly better online clustering
performance than other two. In this way, it is not difficult to understand that the proposed
method would achieve bigger superiority on online clustering overhead when dealing
with a larger size of data in big data analysis. On the other hand, by comparing results of
the proposed method with that of two well-known online clustering methods, it is found
that the proposed method has no superiority on computation time, since k-means and its
extensions can use cluster centers to guide online clustering fast, whereas the proposed
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method can obviously outperform k-means extensions on the accuracy performance. The
reason behind this phenomenon is the ability of granules on data structure description,
whereas the cluster labels are also denoted according to the distinction on data structure.
However, the centers of k-means clusters are randomly distributed without considering
data structure information, and DBSCAN-based granules can make use of data density and
structure description ability to realize good performance on spatial data online clustering.

Table 4. Performance comparison on different online clustering methods.

C-DBSCAN G-DBSCAN Proposed Approach Online k-Means Online W-k-Means

Acc. 0.9450 0.9330 0.9520 0.8947 0.9058

Time 0.2279 0.1712 0.0927 0.0632 0.0675

5.2. Spatial Benchmark Data

Furthermore, to study the generalization ability of the proposed method, especially
the superiority of the proposed method on spatial data online clustering, a typical spatial
data (t4.8k dataset) is considered here, namely the Chameleon dataset [50]. This dataset
contains totally 8000 data points, and two attributes are generally taken for experiments.

Figure 10 shows the distribution of Chameleon data. It is seen from Figure 10a that this
dataset has some nested shapes which are not linearly-separable. Therefore, density-based
models can be applied for its clustering in the literature [41], e.g., DBSCAN is used in
this paper. The results are shown in Figure 10b, where six shaped clusters are obtained.
According to the description in Section 3, each cluster is taken for study individually, and
the optimal prototypes of IGs are presented in Table 5.
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Figure 10. Distribution of data in Chameleon dataset. (a) Original data distribution; (b) DBSCAN
clustering result.

For the sake of convenience on the presentation and visualization, the results of Table 5
are based on a specific number of granules, i.e., c = 5 in each shaped cluster. Then, based on
these optimal prototypes and the mentioned procedures of GrC, granules in each structural
cluster are constructed, shown in Figure 10b. It is seen that these granules construct the
skeleton of data distribution, and effectively describe the data structure of the spatial data.
The noise data (anomaly data) outside the normal distribution are effectively excluded,
which is also the superiority of the proposed method to other clustering methods (such as
k-means, FCM). Then, according to granules in the input space, granular fuzzy rules in the
medium space can be correspondingly constructed and prepared for online clustering. By
utilizing justifiable granulating on the reconstruction error metric, granular intervals for
determining if a data point belongs to a given cluster or not are computed. The results are
presented below.
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Table 5. Optimal prototypes in each cluster.

z1 z2 z3 z4 z5

C1 (0.0953, 0.5005) (0.3181, 0.5696) (0.2808, 0.1761) (0.3042, 0.3694) (0.1163, 0.2112)

C2 (0.5333, 0.7704) (0.7013, 0.7656) (0.712, 0.841) (0.6139, 0.8009) (0.553, 0.8449)

C3 (0.5329, 0.3078) (0.6032, 0.1249) (0.5328, 0.4072) (0.4611, 0.1334) (0.5553, 0.2053)

C4 (0.2533, 0.7857) (0.217, 0.4002) (0.4159, 0.4317) (0.2205, 0.6264) (0.3876, 0.7231)

C5 (0.6318, 0.294) (0.6254, 0.6233) (0.6097, 0.5299) (0.5676, 0.6134) (0.6329, 0.4129)

C6 (0.8482, 0.2836) (0.8402, 0.5621) (0.8256, 0.4199) (0.8166, 0.1532) (0.8591, 0.7181)

Table 6 shows the granular rules for determining the data points’ belonging. Here, IGy
and IGn also represent the optimal granular intervals of data included and not included
in a specific cluster, respectively. Comparing these results with that of Table 2, it is seen
that granular intervals via the reconstruction error metric in Chameleon data have better
distinguishing ability, which may be because of its more obvious spatial structures. More-
over, Cluster 4 and Cluster 6 perform the best among all the clusters; the other clusters
keep some small fuzzy regions with uncertainty for online clustering.

Table 6. Results of granular intervals in the medium space.

Cluster 1 Cluster 2 Cluster 3

IGy [0, 0.022] [0, 0.003] [0, 0.006]

IGn [0.0018, 0.3038] [0.0387, 0.4747] [0.0039, 0.2559]

Cluster 4 Cluster 5 Cluster 6

IGy [0, 0.021] [0, 0.005] [0, 0.01]

IGn [0.0300,0.2203] [0.0037,0.2137] [0.0509,0.4409]

Finally, with the combination of structural IGs in input space and granular rules in
medium space, we could complete rule-based modeling as (15). Then, the online clustering
on 1000 testing points is evaluated. The numerical results of performance metrics are
presented below.

In Table 7, the results of several different online clustering on Chameleon data are
presented. Firstly, for the proposed granule-based method, different amounts of granules
are compared for discussion. By setting the same number of granules in each cluster,
granules in the input and medium space are constructed for rule-based modeling, and are
subsequently used to guide online clustering. From the comparative results, it is found that
the accuracy of the proposed method on online clustering increases as more granules are
used for modeling; meanwhile, the computation time also increases as well. Therefore, a
trade-off should be made for selecting the optimal parameters in real applications. Secondly,
by comparing with the two other DBSCAN extensions (i.e., C-DBSCAN and G-DBSCAN)
on online clustering, it is found that the major superiority of the proposed method is less
computation cost; this would be more obvious in big data analysis. Moreover, the accuracy
of the proposed method can also outperform other DBSCAN methods when selecting suit-
able parameters. The reasons behind this phenomenon can be explained as: (1) C-DBSCAN
leverages huge information of historical data in the online clustering process, causing a
high computation cost; (2) G-DBSCAN can reduce the time consumption with the help of
grid cells, but sub-grids have poor representation ability, especially for a dataset with a lot
of anomaly data (e.g., blue points in Figure 10), leading to an unsatisfactory accuracy. The
proposed granule-based DBSCAN method makes use of the granules’ structure description
ability and good representation ability, and both the time consumption and accuracy of
online spatial data clustering are improved. Therefore, it is concluded that these results not
only verify the feasibility of the proposed method on online clustering, but also illustrate
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the improvement of the proposed DBSCAN extension on online spatial data clustering.
Thirdly, comparing results with the other two k-means-based online clustering methods,
the proposed method has great superiority on accuracy, not on computation time. This
is because the Chameleon data has stronger constraints on the structure clustering, so
conventional clustering methods, such as k-means, cannot perform well, even though they
have superiority on computation time.

Table 7. Performance of online clustering on the Chameleon data.

Granule-Based
C-DBSCAN G-DBSCAN k-Means W-k-Means

c = 5 c = 10 c = 15 c = 20

Acc. 0.7550 0.8760 0.8990 0.9134 0.8979 0.8754 0.5218 0.5854

Time 0.0671 0.1185 0.1861 0.1907 0.4347 0.3924 0.1419 0.1576

All in all, by combining the results in both the toy dataset and the benchmark
Chameleon dataset, we can conclude that it is feasible to apply the proposed DBSCAN-
based granules to extend DBSCAN in online clustering. Moreover, the proposed method in
this paper could achieve better accuracy on online spatial data clustering than conventional
methods, and it can also have superior computation time to other DBSCAN extension
algorithms on online clustering.

6. Conclusions

To realize fast and effective online spatial data clustering, this paper developed a
DBSCAN extension algorithm with a combination of granular models focusing on on-
line clustering. The proposed algorithm was developed with three layers via granular
computing. The first layer is to construct structural granules via DBSCAN and GrC in
the input space. The numerical results on synthetic spatial data verify the superiority of
DBSCAN on clustering data with arbitrary shapes compared to conventional methods.
Moreover, DBSCAN-based granules are found to well inherit the structure description
ability, which is useful in spatial data clustering. Then, the second layer made use of
the reconstruction error for rule formation in the medium space. Granular intervals are
constructed via justifiable granulating, and utilized to form fuzzy rules for determining
the data’s belonging. The numerical results show that these rules have a good ability on
distinguishing different clusters’ data, and this ability will be outstanding when the data
are more structural. Finally, making use of structural DBSCAN-based granules and fuzzy
rules in medium space, online clustering on spatial data was implemented by rule-based
modeling. Experiments on synthetic and typical spatial datasets verified the feasibility
of the proposed method in online spatial data clustering. Through the comparison with
well-known k-means-based methods, the superiority of the proposed method on improving
the performance of spatial data clustering is verified. Moreover, via the comparison with
different DBSCAN extensions on online clustering, the proposed granule-based method
is demonstrated to have less computation overhead and a relatively good performance,
especially in online clustering orienting to big spatial data.

By making use of this proposed method, researchers can develop some practical engi-
neering applications about online recognition and spatial data in the future; for example,
geographical information systems, logistics monitoring services, and so on. However, some
limitations can also be found. For example, since the major superiorities of the proposed
method are based on DBSCAN and GrC, it may be possible to develop online spatial data
clustering algorithms based on more advanced density-based methods. Moreover, the
discussion on how to trade off the number of granules with the computation overhead
is not implemented in this paper, which would be also a meaningful topic in practical
applications, which usually require comprehensive performances.
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